1. 1. Introduction
  2. Research Methodologies
  3. 2. Course
  4. 3. Seminar 1
  5. 4. Seminar 2
  6. 5. Extras
  7. Models
  8. 6. GNNs
  9. 7. ViTs
  10. 8. General Circulation Models
  11. 9. Structured State Spaces
  12. Transformer Variants
  13. 10. MaxViT
  14. 11. HieraViT
  15. 12. Swin Transformer
  16. 13. Swin Transformer V2
  17. 14. Spatio-Temporal Swin-Transformer
  18. 15. Multiscaled stacked ViT
  19. 16. Efficient Transformers
    1. 16.1. Linear Transformers
    2. 16.2. Linear Transformers as FWP
    3. 16.3. The Devil in Linear Transformers
    4. 16.4. Performer
    5. 16.5. SRFormer
  20. 17. Test time training
  21. 18. TTT++
  22. 19. Universal Transformers
  23. Weather Models
  24. 20. Rise of Data-Driven Weather Forecasting
  25. 21. ClimaX
  26. 22. PanguWeather
  27. 23. MetNet
  28. 24. FuXi
  29. 25. FourcastNet
  30. 26. GraphCast
  31. 27. PrithViWxC
  32. 28. ORBIT
  33. 29. Climate Benchmarks
    1. 29.1. ClimateLearn
    2. 29.2. ClimateBench
    3. 29.3. WeatherBench
  34. 30. IPCC Reports
    1. 30.1. WG1
    2. 30.2. WG2
    3. 30.3. WG3
    4. 30.4. AR6
  35. Misc and Domain Specific Models
  36. 31. ACE
  37. 32. ExPT
  38. 33. Closed-form continuous-time neural networks
  39. 34. Recurrent Fast Weight Programmers
  40. 35. Liquid Neural Networks
  41. 36. Liquid S4
  42. 37. AI CCA
  43. 38. FireCast
  44. 39. FarSite
  45. 40. Wildfire risk modeling
  46. 41. XAI wildfire in the Mediterranean countries
  47. Scaling Benchmarks
  48. 42. Training LLMs on leadership‐class supercomputers
  49. 43. Scaling Laws for LLMS
  50. 44. Compute Optimal LLMs
  51. 45. Data Optimal LLMs
  52. Development
  53. 46. Parallelization
  54. Boring AI
  55. 47. Data Quality
  56. 48. Trustworthy AI
  57. 49. Provenance Documentation for AI
  58. 50. Information Required for XAI
  59. 51. Explainable AI Techniques
  60. 52. Provenance
    1. 52.1. Open Provenance Model
    2. 52.2. PROV Notation
    3. 52.3. PROV Constraints
    4. 52.4. PROV-JSON
    5. 52.5. A Graph Model for Data Provenance
  61. 53. Provenance Supporting Hyperparameter Analysis in DNNs
  62. 54. FAIR Guiding Principles
  63. 55. Advances, Challenges, and Opportunities in TAI
  64. 56. Provenance in ML
    1. 56.1. Provenance in ML Lifecycle
    2. 56.2. Prov supporting Hyperparameter Analysis in DNNs
    3. 56.3. Data Provenance for Distributed ML
    4. 56.4. Linking PROV and XAI in distributed ML
    5. 56.5. MLFlow2PROV
    6. 56.6. LIMA
    7. 56.7. ProvLake
    8. 56.8. Efficient runtime capture of multiworkflow data using prov
    9. 56.9. PrIU
    10. 56.10. Provenance for Responsible AI Systems
    11. 56.11. Provenance Documentation for XAI
      1. 56.11.1. Data Provenance Initiative
  65. 57. RO-Crate
  66. 58. Workflow Run ROC
  67. 59. Collecting Managing and Analyzing Provenance Data
  68. 60. Provenance-based IDs
  69. Energy Efficiency
  70. 61. Metrics
  71. 62. CarbonLLM
  72. 63. HVAC
  73. 64. Computational/Energy Use of CMIP6
  74. 65. Energy Intensity of Internet Data Transmission
  75. 66. Green AI
  76. 67. Green 500 Metrics
  77. 68. Data center EE
  78. Growing Models
  79. 69. LSTMVis
  80. 70. H-State and Semantic Structure
  81. 71. Hidden Memories of RNNs
  82. 72. Analysis of Entropy in Hidden States
  83. Useful Stuff
  84. 73. Notes for Talks
    1. 73.1. A Data-Oriented Perspective
    2. 73.2. Ai for Good talk
  85. 74. Tropical Cyclones
  86. 75. Model Comparison
  87. 76. Challenges and Opportunities
  88. 77. FM4C Improvements
  89. 78. WandB Webinar
  90. 79. Zero
  91. 80. Zero++
  92. Ideas
  93. 81. Fire behavior
  94. 82. ML for Climate
  95. 83. Incremental Models
  96. 84. Scaling Issues
  97. Footnotes

Foundation Model 4 Climate Notes

LLM Carbon